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INFRARED EMISSION FROM GAS-AEROSOL REACTIONS

I. INTRODUCTION

Infrared radiation in the atmosphere above normal background levels

can be produced in a variety of ways. For example, combustion gasesi can

produce significant amounts of radiation in the infrared region (2 to 20 m).

However, the total mass of material, and thus the radiant emittance, is small.

In addition, the gas cloud rapidly cools and disperses. In order to

significantly increase the amount of airborne material, an aerosol must be

employed.

At ambient temperatures (25 0 C) the maximum of the blackbody emission

curve is at about 1030 cm- (9.7pm), which means that a few degrees Increase

in temperature will produce an increase in spectral radiance on the order of

5% at 5 to 10um. A highly conducting and absorbing substance may approximate

a blackbody, but most real aevosol particles will at best be "grey" bodies

with perhaps some superimposed structure (*electivity). The (equilibrium)

thermal emittance of an aerosol particle will therefore be less than that of a

* blackbody at the same temperature, ace.ording to Kirchhoff's Law. A second and

more selective method could invcl,,e the production of infrared fluorescence.

This would have the advantage of being selective as to wavelength range and

would thus also require much less total energy input. Unfortunately, due to

the rapidity with which vibrational energy degrades, it does not seem possible

Sto employ this approach. in other words, in order to obtain infrared (IR)

.4. luminescence in any observable yield, a dilute gas and a high energy IR laser

is normally required. We have therefore focused attention on thermal
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emission.

In order to accomplish the desired goal, an exothermic chemical

reaction must be employed to raise the temperature of the aerosol particle p

above ambient. This reaction must ultimately involve either the reaction of a

gas with the aerosol or the simultaneous generation of a very highly disperse

co-aerosol which will rapidly coagulate with the coarser aerosol and react. I

This is technically more difficult, and there would always be the problem of

the highly disperse aerosol coagulating with itself. In the former case, the

gas could be generated as a volatile co-aerosol.

A large number of chemical reaction studies have been perforued on the

upper end of the particle size spectrum with regard to the combustion of fuel

sprays and dust clouds 2 . These involve particles in the super-micron range

(10 to 1000Pm). Chemical reactions responsible for heterogeneous nucleation

have also been investigated, 3 5 , and the particle sizes here are below O.1Pm.

However, once aerosols are produced either by nucleation and growth in the

atmosphere or by nebulization followed by settling and coagulation, most of

these achieve a relatively stable existence in the 0.1 to 10Jm range as smokes,

fogs, etc. 6 ' 7 These systems are polydisperse, with number densities generally

less than 107cm3 . Nonetheless, there have been relatively few studies of the

reactions of gases with aerosol particles in this size regime.

In principle, the reaction rate may be controlled by gas phase

diffusion, diffusion of reactants and/or products in the particle, by the bulk
chemical reaction, or by processes occurring in the droplet interface region.

Cadle and Robbins 8 have developed equations for some limiting cases and

applied them to the reaction of ammonia with sulfuric acid aerosols in the 0.2

to 0.9 m range, and to the reaction of NO2 with a sodium chloride aerosol. In

the former case, it was suggested that the rates in concentrated H2 SO4

F 8-



droplets, the rate was too fast to measure on their apparatus, and it was

presumed that the rate was controlled by gas phase diffusion. 8 , 9 .

There have also been a number of studies of the metal-catalyzed

oxidation of SO2 in aqueous aerosols. Johnstone and Coughanour using a

suspended 500 to 1000lm drop, concluded that the reaction was liquid-phase

controlled with all of the reaction occurring in the outer shell at high

manganese concentration. At lower catalyst concentration, the SO2 penetrated

to the center of the drop. The oxidation of SO2 in 100 to 1000P aqueous

ammonia drops was also controlled by liquid phase diffusion. However,

extrapolation of the manganese catalyzed oxidation rates in the supermicron

drop to an atmospheric fog of 20pm droplets predicted a rate 500 times that

observed.12

Because of the importance of atmospheric reactions, 13 studies have

focused on water droplets and reactions involving SO2 , NO2 , NH3 , H2 SO4 ,and

various metal salts. In these cases, the frequently complex reactions are

generally also accompanied by droplet growth. This is not the case in the

well-controlled reaction of submicron sized 1-octadecene droplets with bromine

"gas.14 However, this reaction is slow and not highly exothermic.

PM
Nonetheless, these studies do indicate that it should be possible to produce

thermal emission as a result of a gas-aerosol reaction, and we report here the

results of initial investigations utilizing exothermic reactions between gases

and liquid aerosols.

2. RESULTS AND DISCUSSION

2.1 Aerosol Generation and Detection.

For these initial studies, the aerosols were generated by means of a

9



compressed air nebulizer (DeVilbis). This generator produces an aerosol with

a wide distribution of sizes (i.e. - polydisperse) and with a mass median

diameter generally in the range of 2 to 4pm, depending upon the liquid.

However, this generator is easy to employ, and the mass concentration of the

aerosol is quite reproducible under the same conditions of flow rate and tank

pressure. Nitrogen gas (20 psi) at a flow rate of 3 to 6 U/min was employed,

resulting in a reproducibility of about 5% for sulfuric acid and

dibutylphthalate (DBP).

All of the studies reported here have been carried out in the reaction

tubes shown in Figure A-i. The wall-less tube (Figure A-la) will be referred

to is the "open" tube, and the other (Figure A-lb) as the "closed" tube. In

both tubes the reactive gas stream emerges from the inner tube, the aerosol

from the next concentric tube, and the sheathing gas from the outer tube. The

prinicpal modifications from earlier designs are the mixing of reactive gas

with aerosol via small holes at right angles to the aerosol flow rather than

through a glass frit and, for the closed tube, the use of a larger &2.5 cm

diameter) radiometer viewing port. The reaction tube, radiometer and exhaust

are mounted in a metal frame shown schematically in Figure A-2. The entire

setup is in a hood, but the exhaust fans in the hood cannot be used since the

vibrations and airflow patterns cause excessive interference with the

radiometer. For the open tube, a configuration employing a 4 inch diameter

exhaust hose and auxilliary fan located outside the hood has proved effective.

Arrangements involving cone-shaped vacuum exhausts were not effective. The

radiometer is on a traverse for accurate and reproducible positioning, and

thermistor probes may be inserted in the gas stream at variable locations.

The radiometer is a Molectron pyroelectric radiometer model PR200 with

a response time of 3 sec for 20pW cm- 2 full scale, a 0.1 Sr field of view, and

10
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a detector area of 0.2 cm2 . The closed tube and the radiometer are fitted

with a KRS-5 window which has a cutoff at about 50V . Thus, essentially all r

of the emitted radiation is collected. The thermistor probes (YSI series 400)

have a time response of 4 to 5 see and a tolerance for exchange of probes of

O.10 C. The meter currently used gives readings to within + 0.3 0 C.

The output of the generator is determined by collection for a period

of time, normally 1 min, followed by analysis. The DBP aerosol is collected

on a millipore filter (0I A) and weighed. The acid aerosols are collected in

an impinger containing about 100 ml of water and then titrated either

coulometrically or with NaOH to a phenolphthalein endpoint. It is also

possible, for continuous monitoring, to use a glass pH electrode.

The reactions and reaction conditions employed in this study are given

in table 1. The reactions listed are meant only to show the stoichiometry and

not to imply anything concerning the extent or sequence of reaction.

2.2 Gas-Aerosol Reactions.

Using the closed reaction tube (figure 1b), emission from all of the

reaction systems listed in table 2 was observed. There is an initial rapid

jump in emission upon reaction, followed by a slower increase leveling off

after about five minutes. Upon cutoff of the reaction gas, the radiometer

decrease took place with a half-life also on the order of five minutes. Since

the linear flow velocity of the gas-aerosol stream is on the order of 40 cm

sec-, heating of the glass wall of the reaction vessel seemed to be

contributing to the emission. This was confirmed by simultaneous radiometer

(R) and temperature MT) measurements using the thermistor probe. A plot of R

vs T is shown in figure A-3 for the closed 'tube (figure A-3a). The large

411
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7 .T W ' 7W 77- . . 17. 1. V Z- T. 7 -7 7. 7,

A. Reactions (aerosol underlined)

1. ClSO3H + 1120 (g) ÷ H2SO4 + HCI (g)

H2S04 + 2NH 3 (g) (NH4 )2 SO4

HCl (-g) + NH3 (g) ÷ NH4 CI (s)

2. H2 So4 + 2NH 3 (g) + (NH4 )2 S04

3. RCOOH + NH3 (g) + RCOONH 4

4. RNH 2 + HC1 (g) RNH 3CI
B. Conditions

I. Flow rates (z/min):
a. sheathing gas, 0.75

'b. reactive gas, 0.75
c. aerosol; CISO3 H, 5.4; all others 3.4

2. 'Concentrations (g/m 3 ):
a. NH3, 20
b. H20, 25
c. HCI, 8
d. aerosol; DBP, 5.1; C1S03 H, 8.0; H2 SO4 , 1.0

Aerosol Gas ba

octanoic acid NH 21 w

"octylamine NCi 30 wm

H2 SO4  NH3  65 --

NH3 /H2 0 64 m

C1SO3H H20 0-40c

NH3 /H2 0 96 - 11 4 c s

a. Estimated heats of reaction in kcal per mole of aerosol material
b. Indicates infrared emission (w~weak, iremedium, s=strong).
c. Upper figurc includes heat of hydration of reaction products.
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hysteresis is indicative of wall effects. Nonetheless, the closed tube is

still quite useful for screening studies due to its higher sensitivity. For

example, there seems to be a rou&h correlation between the level of infrared

emission and the enthalpy of reaction (table 2). The ClSO3 H-H2 0 reaction

seems to be an exception, although more quantitative studies are required.

These studies may be carried out using an open tube vessel (vide infra).

In order to help eliminate effects due to wall heating, an open tube

was employed (figure A-lb). That this system is indeed superior to the closed

tube in this regard is shown by the rapid response to the introduction and

withdrawal of the reactant gas (figure A-4) and the lack of R vs T hysteresis

(figure A-3b).' It should be noted that the flow of reactant gas carrier was

not changed. The carrier gas could be led through the reactant gas supply or

could bypass it. The open tube does suffer from the disadvantage of being

more susceptible to external perturbation such as wind currents and

vibrattons. Note the noise levels in figure A-4. Of course, this was

recorded with a 3 sec time constant, and a 100 see time constant could be used

to determine steady-state levels. However, the observed range of measured

power per unit area (R) with the open tube is about 1 to 1OI• cm-2 compared

with current "background" levels of about 1jiW cm- 2 .

2.3 Temperature-Distance Profiles.

Since it is convenient to determine the fraction of CIS03 H aerosol

reacted in the closed tube, initial measurements of the temperature as a

function of distance from the mixing zone were made in this reaction tube.

The results are shown in figure A-5. The temperatire is measured by the

thermistor with the aerosol flowing with and without reactant gas. The

quantity AT is the difference between these two temperatures. It should be

noted that all flow rates are identical since the reactant gas carrier stream

13
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is on but bypassing the aqueous ammonia reservoir. The temperature is

constant up to about 10 cm, and then begins to decrease. Since the linear gas

velocity is about 100 cm sec-1, this represents a time of 0.1 sec. However,

the reaction is not complete at this point, since analysis of the amount of

C1So 3 H aerosol reacted at a point about 4 cm further downstream indicates <

85% reaction.

This analysis was performed by passing the gas-aerosol stream through

a bed of molecular sieve which passes a majority of the aerosol but no

reactant gas. The ClSO3 H aerosol was collected by two impingers in series

since previous experience with this material showed that a significant

fraction escapes a single impinger, probably due to the formation of HCl. The

aqueous solution in each impinger was titrated coulometrically, and followed

by monitoring the pH with a glass electrode. The output of the pH meter was

displayed on a strip-chart recorder. This result indicates that the reaction

rate rapidly slows down. A similar type of behavior was observed by Cadle and

Robbins 8 in the reaction of ammonia with concentrated sulfuric acid droplets

(.2 to .9pm) and ascribed to the diffusion of reaction product in the

particle.

Since wall heating effects are known to be present in the closed tube,

similar experiments were performed in the open tube. To serve as a basis for

comparison, the rate of cooling of a thermally heated dibutyl phthalate (DBP)

aerosol was also measured. The results are shown in figure A-6. The C1SO3 H

aerosol appears to maintain temperature longer than the heated aerosol, which

it should if reaction is occurring. However, the difference is not great. It

might be expected that the gas and droplet temperature in the case of the

heated DBP aerosol are the same. The question as to what temperature is

actually being measured in the case of the reacting aerosol will be addressed

14
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below.

A simple treatment of the rate of heat loss fom a flowing stream by

conduction and radiation, neglecting the velocity profile in the stream,

convection, and the difference in speed between the various layers, predicts

an expoential decay of temperature with distance. A plot of log AT vs x does

appear linear for the heated DBP aerosol as shown in figure A-7.

2.4 Emittance-Temperature Profiles.

Over a range of temperatures, the (net) radiant emittance (AR) should

be proportional to AT. Therefore, a number of measurements of AR vs AT were

"made using heated DBP aerosol, heated gas, and the C130 H aerosol reaction

system. The radiometer resporse for a heated DBP aerosol is shown in figure

"A-8. The time lag is greater than for the reaction system due to heating and

cooling in the glass reaction tube. It should be noted that when the

thermistor probe is in the radiometer field of view, considerably higher

readings are obtained.

"7j
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The radiant emittance-temperature profiles, obtained using the open

tube and measured all at a fixed distance from the mixing zone, are shown in

figure A-9. The solid line is a least-squares fit of the heated DBP data

through the origin, and has a slope (AR/AT) of 0.56PW cm- 2 K-1 . This is

approximately 5% of blackbody. As expected because the aerosol provides only

a small fraction of the mass of the emitting radiation all of which (aerosol

and gas) is at the same temperature, heated gas (no aerosol) gives essentially

the same result, albeit with slightly more scatter. The C1SO3 H aerosol

reaction data, on the other hand, exhibits a great deal of scatter. The

corresponding values of AR/AT in figure A-9 are 0.82 (reactant gas on-off) and

0.36 (aerosol on-off) pW cm-2K-1. It was earlier reported, based on a few

preliminary measurements, that AR/AT was higher for the reaction system1 5 but

there is no definitive evidence for this in the more extensive set of data of

figure A-9. We assume that for the same reaction conditions (flow rate,

"concentration, etc.) that the AR's will not depend on which reactant is

controlled (on-off), therefore this variation in AR/AT must be attributed to

variation in the temperature sensed by the thermistor. This raises the

question as to the temperature actually being measured by the thermistor in

the case of the gas-aerosol reaction. Where unlike the case of uniform

heating of an inert aeosol flow in the oven, the gas temperature may differ

* from that of the reacting aerosol particles it carries. The rate of the gas-

"aerosol reaction will likely be liquid phase controlled; i.e., controlled

either by the rate of diffusion in the liquid drop or by the bulk reaction

rate. Typically, this will involve reaction rates Vs or 3 X 10-7 - 3 X 10-8

moles cm- 2 s for 1 p drops, although faster rates are possible. Under a

sirnle heat transfer model the aerosol will cool rapidly by conduction to the

surrounding air such that a steady-state between the rate of heat generation

16
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by reaction and heat loss by conduction should be rapidly ("'30)s) achieved.

Thus, the temperature of the aerosol dops (Td) and surrounding air in the

aerosol cloud (Tc) should be given by

Td Tc + rVs Ha/flg. (1)

Swhere r, H. and n g are the drop radius, heat of reaction, and thermal

conductivity of the air, respectively. For the above conditions and a AH of
s

100 kcal mole-l,AT Td - Tc should only be a few hundredths of a degree. If

all of the heat generated warmed up the air mass with no loss, the cloud

temperature would rise by about 120 C. However, the actual air temperature

will depend upon the rate at which the "cloud" cools in our experimental

apparatus. Using the result from figure A-7, maximum air temperatures of

about 60C are estimated. Now, aerosol will collect and react on the probe,

some fraction of the heat will be transported away by conduction and

radiation, and the remainder will heat up the probe to a temperature higher

than the carrier gas temperature.

We have observed drops collected on glass slides under the same

reaction flow and concentration conditions do show multiple impingements and

"puddling " under the microscope. In addition, it is probable that the drops,

impinging on the probe surface, expose more surface area and provide a

stationary liquid being exposed to a more rapid, flowing supply of reactant

gas. This will lead to a more rapid and complete reaction, heating the probe

above the temperature of the gas. In this case the true AT for the gas is

less than that indicated by the probe, therefore the true value of AR/AT for

the CISO3 H aerosol stream is higher than indicated in the measurements. Since

the measured values were comparable to the DBP result, the AR/AT for reacting

CISO3 H aerosol is greater than AR/AT for inert aerosol. For this to occur the

drops themselves must be emitting more intensely than the DBP drops which were

17



known to be at the same temperature as the gas. Consequently this would mean

that the drop and cloud temperatures were significantly different, as opposed

to the AT Td - T of a few hundredths of a degree estimated by equation (1).

Therefore the simplified physical description leading to equation (1) is not

adequate for treating the case of a reacting aerosol particle in this size

range.

As expected due to emission from the solid object, values of AR/AT

increase if the thermistor is moved to a position within the field of view of

the radiometer. Furthermore, AR vs AT profiles obtained with the thermistor

probe centered in the radiometer field of view gave the same value of AR/AT

(1.25pW cm 2 K-) for all three cases with relatively little scatter, as shown

in figure A-10. This shows that the measured AT does accurately reflect the

temperature of the probe itself and that the radiometer responds linearly to

the probes greybody emission over the temperature range of these experiments.

3. CONCLUSION

These initial studies have shown that it is possible to observe

infrared emission from gas-aerosol reactions and to perform reasonably

accurate measurements under controlled conditions. However, many questions

remain to be answered before a quantitative model can be developed. In

particular, is the drop and cloud (gas) temperature essentially the same or

different? How must equation (1) be modified to properly reflect the heat

transfer between a reacting drop and the surrounding gas? Future work must

involve a study of rate of reaction, heat transfer and radiative emission, as

"well as a determination of the spectral distribution of the emitted radiation.

18
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APPENDIX

LIST OF FIGURES

Figure A-I. Gas-aerosol Reaction Tubes.

"Figure A-2. Schematic Diagram of Reaction System.

Figure A-3. Radiometer reading (R) vs probe temperature (T) for

(a) closed tube and (b) open tube (vide text).

Figure A-4. Radiometer response vs time for the NH3 /H2 0-ClSO3 H

gas-aerosol reaction system. The introduction and cutoff

of reactant gas is denoted by arrows.

- Figure A-5. Temperature change (AT) vs distance for the CSO 3H-

NH3/H0 reaction in the closed tube.
3 2

Figure A-6. Temperature change (AT) vs distance for heated DBP

aerosol (closed circles) and C1SO H-NH IH 0 reaction
3 3 2

(open circles) in the open reaction tube.

Figure A-7. Log of the temperature change (AT) vs distance for the

heated DBP aerosol in the open reaction tube.

Figure A-8. Radiometer reading vs time for a heated DBP aerosol in

the open reaction tube. The maximum AT is 6 C.

Figure A-9. Net Radiometer reading (AR) vs temperature change (AT)

for heated DBP (open circles), heated nitrogen (filled

* circles), and CISO3H-NH 3/H20 reaction (half-filled cirles).

Either the reactant gas (left half-filled) or the aerosol

(right half-filled) was turned on and off.
Figure A-10. Net radiometer reading (AR) vs temperature change (AT)

"for heated DBP aerosol (open circles), heated nitrogen

(filled circles), and CISO3H-NH3 /H2 0 reaction (half-

filled) or the aerosol (right half-filled) was turned on

and off. In all cases, the thermistor probe was in the

radiometer field of view.
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Figure A-i. Gas-aerosol Reaction Tubes
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gas-aerosol ia. -tion system. The introduction and cutoff
of reactant *;: is denoted by arrows.

Appendix 26 .71



C,.

r

.4'.

,.4 r

4.

• ~6 
,

p 4

~em~rtue hage(AT) vsdstne2o the CiSO3U-NH /H 0 reaction -
in the closed tube.

27
A p pendi

. i t e lo ed ub .- 4,

4 4.44.44;

' 4 4 4 4 4 4



%I

.6

0

0 I='

.0 00

V... 4 C 0

0"K 00

4 2 4

DISTANCE (cm)
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reaction tube.
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